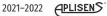

Измерительный преобразователь разности давлений (интеллектуальный) APR-2000AL

- Коммуникатор КАР Производства APLISENS
- Возможность корректировки "нуля", выбора диапазона измерений и коэффициента демпфирования
- ✓ Выходной сигнал 4...20, 0...20 или 0...5 мА + протокол НАRT
- Устойчивость к перегрузке давлением до 41,3 МПа
- ✓ Основная приведенная погрешность ±0,075%, цифровая компенсация дополнительных погрешностей
- ✓ Взрывобезопасное исполнение Ga/GbExiaIICT4/T5X, Ga/GbExia/dIICT5/T6 X

Преобразователь **APR-2000AL** с присоединением **C** для монтажа с вентильным блоком (присоединение с вертикальным подводом импульсов обозначается **CH**, см. фото стр. 25) Допустимое статическое давление **25, 32** или **41,3 МПа** (по заказу)

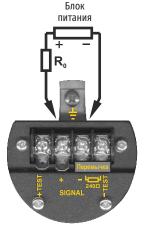
Преобразователь **APR-2000AL**Присоединение **P** со штуцерами. Допустимое статическое давление **4 МПа**


Тип PD

В кабельный ввод встроен штепсельный разъем. Степень защиты IP65 Штепсельный разъём типа DIN 43650

Назначение

Преобразователь APR-2000AL предназначен для измерений разности давлений газов, паров и жидкостей. Измерительным элементом является пьезорезистивная монолитная кремниевая структура, встроенная в приёмник давлений и отделенная от измеряемой среды разделительными мембранами и специальной манометрической жидкостью. Конструкция приёмника гарантирует устойчивость преобразователя к перегрузке по давлению до предельно допустимого статического давления 25, 32 или 41,3 МПа.



В корпусе со степенью защиты IP66, выполненном из алюминия или нержавеющей стали, находится микропроцессорный усилитель, формирующий выходной унифицированный сигнал. Конструкция корпуса даёт возможность поворота местного индикатора на 90°, поворота корпуса по отношению к приёмнику давлений в пределах 0-355°, а также выбор направления ввода кабеля.

Электронная часть производится в двух конструктивных вариантах:

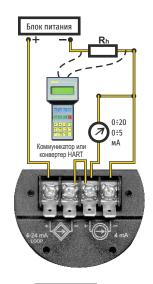
Вариант основной APR-2000ALW

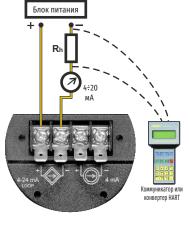
- ✓ Кнопки на фронтальной панели позволяют:
 - установить начало и конец диапазона измерений путем записи величины или заданным давлением
 - обнулить преобразователь
 - изменить единицы измерения
 - изменить характеристики преобразования (линейная или корневая)
 - изменить коэффициент демпфирования
- ☑ Конфигурация режима работы индикатора:
 - отображение действующего значения давления
 - отображение значения выходного тока в мА или в процентах от диапазона
 - отображение шкалы пользователя
- Ga/GbExialICT4/T5 X, Ga/GbExia/dIICT5/T6X

Коммуникатор или конвертер HART

подключаем на TEST+, SIGNAL+ (любая полярность)

Миллиамперметр


подключаем на TEST+, TEST-


Электрическое подключение

Питание подключается на клеммы SIGNAL+ SIGNAL- с сохранением полярности, показанной на рисунке. В случае недостаточного для обмена данных HART сопротивления нагрузки $(R_{_{0}}$ < 240 Ом, где $R_{_{0}}$ – сумма входных сопротивлений вторичных приборов и внутреннего сопротивления источника питания), добавляем в цепь резистор 240 Ом, находящийся на плате преобразователя, снимая перемычку с клемм SIGNAL- TEST-. Если сопротивление нагрузки превышает 240 Ом, то использовать внутренний резистор, который внесет дополнительный перепад напряжения около 5В, не рекомендуется. Для электрического подключения цифровых преобразователей рекомендуется применение экранированных кабелей. Экран подключаем к клемме заземления в соединительной коробке преобразователя.

Вариант с любым выходным сигналом APR-2000ALE

(устанавливается пользователем)

Интерфейс, конфигурация

Связь пользователя с преобразователем APR-2000AL осуществляется посредством протокола HART. При этом в качестве линии связи используется цепь выходного сигнала. Обмен данными с преобразователем осуществляется с помощью:

- коммуникатора КАР;
- некоторых других коммуникаторов, поддерживающих протокол HART;
- персонального компьютера с использованием конвертера HART/USB и программного обеспечения RAPORT-2 производства фирмы Аплисенс или иных универсальных программных инструментов, работающих под системой Windows и использующих библиотеки EDDL и DTM. Вместе с программным обеспечением **RAPORT-2** поставляется программа для кусочно-линейной аппроксимации характеристики.

Обмен данными с преобразователем позволяет осуществлять:

- идентификацию преобразователя,
- конфигурацию выходных параметров:
- единиц измерения и значений начала и конца измерительного диапазона,
- постоянной времени демпфирования,
- характеристики преобразования (квадратичная, обратная, нелинейная характеристика пользователя),
- отображение действующей величины давления, выходного тока и уровня выходного сигнала в %,
- ◆ задание значения выходного тока,
- калибровку преобразователя по отношению к образцовому давлению.

Монтаж

Учитывая небольшую массу, преобразователь с присоединительным устройством Р монтируется непосредственно на импульсных трубках. Для монтажа в любом положении предлагаем крепление AL производства Аплисенс (стр. 89).

Преобразователь с присоединительным устройством С целесообразно монтировать с вентильным блоком. Производитель рекомендует использовать вентильные блоки серии VM-3 и VM-5. Для монтажа на трубе 2" либо стене предлагаем крепление С-2" (стр. 89).

Для измерения уровня сред, требующих специальных процессных присоединений (химическая, сахарная промышленность), преобразователь может быть оснащён одним из разделителей производства Аплисенс. Комплекты преобразователей разности давлений с мембранными разделителями представлены далее.

Диапазон измерений

Nº	Основной диапазон (пределы измерений)	Мин. устанавл. ширина измерит. диапазона	Возможность перенастр. начала измерит. диапазона	Допускаемая перегрузка Допускаемое статическое давление	
				Присоединения С и СН	Присоединение Р
1	07 МПа	700 кПа	0 6,3 МПа		7 МПа
2	0 1,6 МПа**	160 кПа	0 1440 кПа		
3	0 250 кПа**	20 кПа	0 230 кПа	25, 32 или	4 МПа
4	0 100 кПа**	5 кПа	0 95 кПа	41,3 M∏a	
5	0 25 кПа**	1 кПа	0 24 кПа	,	
6	-10 10 кПа**	0,4 кПа	-10 9,6 кПа		
7	-0,57 кПа**	0,4 кПа	-0,5 6,6 кПа		
8	-2,5 2,5 кПа (только HS)	0,2 кПа	-2,5 2,3 кПа	20 МПа	
9	-0,7 0,7 кПа (только HS)	0,1 кПа	-0,7 0,6 кПа	2 МПа	
10	-50 50 кПа*	10 кПа	-50 40 кПа	4 МПа	

^{* –} рекомендуется для измерения уровня с непосредственным разделителем и залитой (или пустой) импульсной трубкой

Технические данные

Метрологические параметры

Предел допускаемой приведенной погрешности

 \leq ±0,075% для основного диапазона спец. исполнение \leq ±0,05%

Стабильность метрологических характеристик

не хуже чем: основная погрешность/3 года не хуже чем: основная погрешность/6 лет

Дополнительная погрешность, вызванная изменением температуры окружающей среды

< ±0,05% (осн. диап.) / 10°C

< ±0,08% (осн. диап.) / 10°С для диап. 9

Диапазон термокомпенсации

исполнение **HS**

-25...80°C

-40...50°С специальное исп.

Дополнительная погрешность, вызванная изменением

статического давления ±0,01% (осн. диап.) / 1 МПа

 $\pm 0,03\%$ (осн. диап.) / 1 МПа для диапазонов № 7 $\pm 0,06\%$ (осн. диап.) / 1 МПа для диапазонов № 1, 2

±0,005% / 1 МПа для исполнения **HS** ±0,01% / 1 МПа для диапазона № 2 исп. **HS**

Срок фиксирования выходного сигнала 16...480 мс

исполнение Exd, Safety 330 мс

Дополнительное электронное демпфирование 0...60 с

Дополнительная погрешность, вызванная изменением

напряжения питания 0,002% (осн. диап.) / В

Электрические параметры

Напряжение питания 10...55 В пост. тока (Exi 10,5...30 В)

(Exd 13,5...55 B)

APR-2000ALE 10...36 В пост. тока

Выходной сигнал 4...20 мА (двухпроводная линия)

APR-2000ALE 4...20, 0...20 или 0...5 мА (трехпроводная линия)

Активное сопротивление нагрузки определяется по формуле $R[\Omega] = \frac{U_{\text{пит}}[B] - 10B}{0,0225A}$

Активное сопротивление необходимое

для обмена данными (HART) мин. 250 Ом

Условия работы

Диапазон температур окружающей среды -50...75°C

для присоединения типа С

и стандартной термокомпенсации -25...80°C **Диапазон температур среды измерения** -50...120°C

свыше 120°C – измерение с использованием мембранных

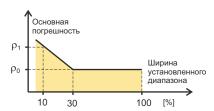
разделителей либо импульсных трубок

ВНИМАНИЕ: не допускать замерзания среды измерения в импульсной трубке или вблизи штуцера преобразователя

 Материал штуцеров (типа Р)
 (316L)

 Материал мембран
 (316L)

спец. исполнение Hastelloy C276 Тантал


Материал фланцев (типа С) (316L) или

Hastelloy C276 (спец. исп, не касается исполнений Кислород, 32 МПа, 41,3 МПа

и 70 МПа)

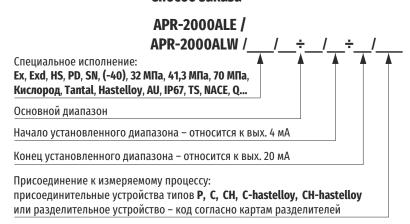
Степень защиты корпуса 1Р66/67

Зависимость основной погрешности от ширины установленного диапазона

 ho_0 — погрешность для основного диапазона (0...100%)

ρ₁ – погрешность для диапазона (0...10%)

 $\rho_1 = 2 \times \rho_0$


Значения погрешностей приведены в технических данных – метрологические параметры

^{** –} доступны также в исполнении **HS** (приемник давления с высокостабильным полисенсорным измерительным элементом)

Специальные исполнения

- ◊ Ех искробезопасное исполнение
- ◊ Exd взрывонепроницаемая оболочка
- ♦ HS полисенсорный измерительный элемент (не касается диапазона № 1)
- ♦ PD штепсельный разъем DIN 43650
- ♦ SN материал корпуса нержавеющая сталь (316)
- ♦ (-40) диапазон термокомпенсации -40...50°C
- 🜣 32 МПа, 41,3 МПа допускаемое статическое давление
- ♦ 70 МПа допускаемое статическое давление 70 МПа (по согласованию со специалистами АПЛИСЕНС)
- Кислород преобразователь, предназначенный для измерения кислорода (только для диапазонов № 4, 5, 6 и 7 в стандартном диапазоне термокомпенсации)
- ♦ **Tantal** материал мембраны тантал (не касается исп. Кислород и HS)
- ♦ Hastelloy материал мембраны Hastelloy C276 (не касается исп. Кислород, 32 МПа, 41,3 МПа и 70 МПа)
- ♦ **Au** мембраны покрыты золотом (только диапазон 5, не касается исп. НS)
- ◊ IP67 степень защиты корпуса IP67
- ♦ TS маркировка из нержавеющей стали
- ◊ NACE сертификат на материал смачиваемых частей
- ♦ Q... дополнительная наработка преобразователя для увеличения надежности, подробности в РЭ

Способ заказа

Пример: Преобразователь разности давлений APR-2000ALE / стандартное исполнение / основной диапазон 0 ÷ 100 кПа / установленный диапазон 0 ÷ 63 кПа / штуцера типа Р

APR-2000ALE / 0 ÷ 100 κΠa / 0 ÷ 63 κΠa / P